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Figure 1. (a) 33-yr averages of annual precipitation and Palmer Drought Severity Index Figure 4. (a) Comparisons of annual NEP to NEE, and (b) total NPP, and woody NPP,, as related
(PDSI). PSDI < -3 is considered a severe drought; (b) Mean annual depth to the water to annual GEE in the two ecosystems.
table the two ecosystems, with differences likely due to the lack of deep roots at MT. Conclusions
Figure 5. Relationships between NEE after canopy closure and: (a) depth to water table during N . N .
Figure 2. Annual gross ecosystem carbon exchange (GEE) and net primary productivity drought years; and (b) intercepted PAR during wet years for both ecosystems. Net y carbon using both eddy covariance and biometry showed the same trends and
(NPP) as a function of annual leaf area index (LAI) during the first years of stand itudes during devels
development (MT).
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