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The AmeriFlux network collects long-term carbon, water and 
energy flux measurements obtained with the eddy covariance 
method. To attribute fluxes to specific areas of the land surface, 
flux source calculations are essential. Consequently, footprint 
models can support flux up-scaling exercises to larger regions, 
often based on remote sensing data. 
However, flux footprints are not currently being routinely cal-
culated; different approaches exist but have not been standard-
ized. In part, this is due to varying instrumentation and data 
processing methods at the site level. The goal of this work is to 
map tower footprints for a future standardized AmeriFlux prod-
uct to be generated at the network level. We are applying state 
of the art footprint models across a subset of six AmeriFlux 
sites and two ICOS sites, to evaluate the feasibility and chal-
lenges of developing standardized footprint products.

Table 1: Input variables for footprint models of Kormann & Meixner (2001) and 
Kljun et al. (2004)

Table 2: Output variables generated from footprint model processing.

B) Output Variables

A) Input Variables

Variable Description Units

crosswind integrated footprint function values in [-]
alongwind direction of the measurement location.
crosswind distributed footprint function values on
a regular 2D grid surrounding measurement.
alongwind distance x from the tower to the peak
of the footprint function f_ci.
alongwind distance x from the tower at which
the integrated footprint function f_ci is r %,
(i.e., where r % of the cumulative footprint
influences the measurement). r = {10,20,...80}.
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Variable Description Units

u* friction velocity [m s-1]
u horizontal wind velocity [m s-1]
wd wind direction [deg]

_w variance of vertical wind speed [m s-1]
_v variance of cross wind speed [m s-1]

measurement (receptor) height z
corrected for displacement height D

z_0 roughness length [m]
L Monin Obukhov length [m]
h planetary boundary layer height [m]

[m]z_m = z - D 

Cases where one of the mdels was not valid were removed from the comparison. Table 3: Study site information. Z is the measurement (receptor) height in [m].

Footprints were computed with the model of Kormann & Meixner 
(2001), referred to as “KM01”, and the model of Kljun et al. (2004), 
referred to as “Kljun04”.  The KM01 model calculates an analytical 
solution of the advection-diffusion equation in the surface layer.  It 
uses an exponential mean wind profile, an eddy diffusivity, and 

Fig. 1: (a) f_ci for four different cases of stability obtained by Lagrangian simulation 
according to Kljun et al. (2002). (b) f_2D example plot (Rannik et al., 2012)). 

(b)(a)

Site Year Type Climate Z [m]
US-GLE 2013 Evergreen needleleaf forest Subarctic 23
US-KFS 2013 Grasslands Subtropical 3
US-KUO 2007 Urban and Built-up lands Continental 40
US-Me2 2012 Evergreen needleleaf forest Mediterranean 34
US-Myb 2013 Permanent wetlands Mediterranean 3
US-SDU 2013 Urban and Built-up lands Continental 60
IT-CA1 2013 Croplands Mediterranean 7
IT-CA3 2013 Croplands Mediterranean 6

Monin Obukhov similarity theory. The Kljun04 model is a simple 
parameterisation of model calculations from a three-dimensional 
Lagrangian particle dispersion over a range of atmospheric stratifi-
cations from convective to stable. Both models can estimate cross-
wind-integrated (1D) and crosswind-distributed (2D) representa-
tions (cf. Table 2) of the theoretical footprint functions (Fig. 1).

Fig. 3: Crosswind distributed footprint function f_2D caclulated with Kljun04 for ex-
amples of daytime (a) and nighttime (b) atmospheric conditions (as shown above the 
graphs along with the fluxes) at site US-SDU.

(b)(a)

Fig. 2: Mean diurnal cycles of  x_r80 [m] by month for five example sites. (a) Footprints calculated with the model of Kormann & Meixner (2001), (b) footprints calculated following 
Kljun et al. (2004). Color ranges have been scaled to the indicated maximum and minimum x_r80 to ensure comparability of temporal variation. Time of day shown below graphs.
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(1)  Temporal signatures indicate diurnal and seasonal footprint 
variability, with KM01 estimates following more distinct cycles.

(2)  Overall, agreement between the two methods is reasonable 
for daytime conditions (r = 0.14*** – 0.68***), but there are 
larger differences during nighttime conditions when the atmo-
sphere is more stable.

(3)  Footprint results can be used as additional information 
within the AmeriFlux database to support data interpretation. 

(4)  This work gives a practical perspective on where footprint 
model adaptations may be needed.

•  Update of the Kljun04 footprint model (Kljun, in prep.) could 
impact diurnal and seasonal variability and accuracy. 

•  Future work aims at verification of footprints with experimen-
tal data where available, and validation of footprints using the 
spatiotemporal signature of the fluxes.
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