
Context: This research is aimed at mapping aboveground biomass (AGB, Mg ha-1) in dense 
Oregon forests using data from the NASA Multiangle Imaging Spectro-Radiometer (MISR). 
Efforts to exploit geometric-optical (GO) model inversion to map cover, height, and 
aboveground standing biomass were found to be problematic in these high cover 
environments (Fig. 1), so a boosted regression tree (BRT) approach was explored as a 
means to leverage the information in MISR Li-Ross Bidirectional Reflectance Distribution 
Function (BRDF) model kernel weights and associated parameters.  
MISR Data: MISR Level 1B2 Terrain radiance data from the Terra satellite overpass on 
08/16/11 (Orbit 062028, Path 45, Blocks 55-56, centered on 44’32’’N, 122’00’W) were 
converted to bidirectional reflectance factors (BRF) using MISR Toolkit routines and the 
MISR 1 km LAND product BRFs, and resampled onto a 250 m equal area grid. The data 
include nadir camera blue (B), green (G), and near-infrared (NIR) BRFs and red band BRFs 
in all nine MISR cameras. Surface BRF retrievals were initially missing in very dark, high 
forest cover areas, with the MISR aerosol product showing an aerosol optical depth upper 
bound of zero for all mixtures, i.e., the aerosol retrieval fails. To mitigate this, the LAND 
albedo threshold was reduced to zero and the topographic complexity threshold was 
disabled, extending coverage (Fig 5). 
 
 
 
 
 
 
 
 
 
 
BRDF and GO Model Inversions: Red band BRFs in all available cameras were used with 
AMBRALS to invert the RossThick-LiSparse-Reciprocal (RTLS-R) BRDF model to retrieve 
iso(tropic), vol(ume scattering), and geo(metric scattering) kernel weights, as well as 
model-fitting too mean square error (RMSE), weights of determination, white and black sky 
albedos, and BRDF-adjusted BRF at a solar zenith angle of 45 degrees (NBAR45). The red 
band BRFs were also used to invert a geometric-optical (GO) model using numerical 
minimization to retrieve estimates of fractional crown cover and mean canopy height. 
Other Data: A 1-arcsecond (30 m) digital elevation model (DEM) from the National 
Elevation Dataset (NED) was used to calculate a topographic roughness map at 250 m in 
the following way: a 30 m slope map was calculated from the NED DEM; this was 
resampled to 50 m using bilinear interpolation; Focal Analysis with a 5x5 kernel and a 
St.Dev. function was used to produce roughness estimates that were subsequently 
degraded to obtain the 250 m roughness map (Grohmann et al. 2010). The National 
Biomass and Carbon Dataset (NBCD, Kellndorfer et al. 2013) was used to train the boosted 
regression tree model and in assessing the results of predictions. The 240 m Zone 6 data 
were resampled to the same 250 m Albers Conical Equal Area grid used for the MISR data. 
Boosted Regression Tree Model: The MISR nadir B, G and NIR BRFs, BRDF model kernel 
weights, model-fitting error, albedos, NBAR45, and NBCD biomass data to train a Boosted 
Regression Tree (BRT) model. Boosted regression trees handle different types of predictor 
variables and accommodate missing data; these models have no need for prior data 
transformation or elimination of outliers, they can fit complex nonlinear relationships, and 
they automatically handle interaction effects between predictors (Elith et al. 2008). Training 
initially used two randomly-located sets of 1024 points each, removing data where BRDF 
model RMSE > 0.01. However, clear-cutting and regrowth are common, creating a problem 
when using the NBCD 2000 AGB data with 2011 MISR data (Fig. 1). continued… 
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Figure 3. (a) AGB from MISR/BRT, filtering training data only on Li-Ross RMSE < 0.01 (b) NBCD AGB map for 2000 
(c) MISR/GO model number density, 0–2300 trees (d) Roughness (slope st.dev.) from NED DEM, 0–50 (e) AGB from 
MISR/BRT, filtering training data on temporal coherence as well as Li-Ross RMSE < 0.01 (f) Standard NRG false color 
composite (g) MISR LRST-R iso, vol, geo FCC (h) NED DEM 100-3000 m. AGB map scale for (a)(b)(e): 

Filtering out points that had likely changed in 2011 over 2000 improved the model 
importantly. This was achieved by testing whether the NBCD AGB value was less than the 
median AGB, while the GO model #density was greater than the median #density and 
vice versa. In the first case this means it is likely that the trees in that MISR cell regrew 
over the 2000-2011 period, while in the second it is likely that trees existing in the MISR 
cell in 2000 were clear-cut by 2011. If either test failed, or RMSE < 0.01 then the data 
point was removed, yielding N = 756 and 789 for corrected training and validation sets, 
respectively, reduced from 991 and 1007 for the uncorrected sets, respectively.  
Results: Using the improved training data set (“set 1”) to fit a BRT model with a learning 
rate of 0.005, a tree complexity of 10, and 1200 trees, the optimum number of trees was 
~600 yielding a prediction R2 of 0.78 for the validation data set (“set 2”; Fig. 2). The two 
BRT models were used to predict AGB for a 1,251,600 ha region (Fig. 3 (a) and (e)) and 
the corresponding NBCD and MISR/BRT AGB values were extracted for the (random) set 
1 and 2 locations. These show very good results compared with predictions via regression  
based on Simple GO Model (SGM) forest cover and height retrievals (Table 1, Fig. 4).  

Figure 4. NBCD vs predicted AGB (a) set 1, 
uncorrected (b) set 2, uncorrected (c) set 1, 
corrected (d) set 2 , corrected. 

F i g u r e  2 .  B o o s t e d 
Regression Tree training 
and validation (a) Predicted 
deviance vs number of 
trees (b) Observed vs 
p r e d i c t e d b i o m a s s , 
validation data set only, 
N=991 (c) Fitted functions 
showing contributions of 
predictor variables (d) 
Fitted values vs predictors. 
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Figure 1. Dynamic nature of Oregon forests, from Google Earth imagery (a) 2001 (b) 2007 (c) 2011 
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Figure 5. MISR/BRT predicted aboveground biomass map for MISR 
blocks 55-56 (123700 km2), August 16, 2011, using only B, G, R, 
N nadir BRFs, RMSE, and Li-Ross kernel weights as predictors. 
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TABLE 1.  SUMMARY OF MISR/BRT AND GO MODEL BIOMASS PREDICTIONS VS NBCD 2000 (MGHA-1)  

Conclusions: The BRT approach provides a means of mapping AGB using MISR BRFs 
and derived BRDF model kernel weights with reasonable accuracy and better than that 
obtainable using a GO model in dense forests. The results presented here are based 
almost entirely on the NBCD 2000 data set with 2011 MISR data, so further work is 
required using temporally consistent data; and to validate results with independent data. 


