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Next Steps

NASA JPL CMS-Flux System

The Role of the WRF-Chem Mesoscale Model
Figure 1: The CMS-Flux Framework

The goal here is to make use of the PSU WRF-Chem version 
of the Weather Research and Forecasting model (Skamarock 
et al., (2005); Lauvaux et al., (2012) to quantify errors due to 
atmospheric transport in the CMS-Flux 4D-Var inversion 
system products.  We transport surface fluxes from CMS-Flux 
(optimized biosphere fluxes plus surface fluxes for ocean, bio-
mass burning, fossil fuel, biofuel and ship bunker fuel emis-
sions (see Liu et al., 2014; Nasser et al., 2010; Nasser et al., 
2011).  Boundary conditions are the CMS-Flux posterior CO2 
fields. Ultimately, we will produce an ensemble of WRF simula-
tions over North America using different model physics, com-
paring the atmospheric output to CO2 and meteorological ob-
servations. Shown here are preliminary results from an initial 
run of WRF-Chem at 30 km resolution for 2010.

As part of the initial testing of this experimental setup, we cre-
ated simulated XCO2 observations (pseudo-satellite observa-
tions) at the locations of the ACOS-GOSAT v3.3 samples for 
2010 (O’Dell et al., (2012); Crisp et al. (2012); Wunch et al. 
(2011), applying the ACOS averaging kernel for each sample  
to the WRF column CO2 at each sample location.

Figure 2: North American domain  for WRF simulations.  Also 
shown are locations of ACOS v3.3 GOSAT xCO2 samples for 
June 2010 within the WRF domain.

WRF Pseudo-Satellite CO2 Profiles and XCO2

Seasonal Differences from ACOS-GOSAT

Figure 3: Example profiles at the locations of ACOS-GOSAT 
samples near Park Falls and Lamont on June 22 (A, B) and 
August 27 (C, D), 2010. The WRF profiles (red) are dry 
mole fractions vertically interpolated to the ACOS a priori 
pressure levels (dots on the black lines). CMS profiles are 
calculated from the posterior CO2 field used for the WRF 
boundary conditions. Red and cyan asterisks mark XCO2 
values using the ACOS averaging kernel for these samples. 
The ACOS bias corrected XCO2 value is in black. Note that 
the CMS profiles do not include a water vapor correction, 
the WRF model top is below the highest ACOS pressure 
level, and the uncertainties for these ACOS XCO2 samples 
range from 0.58 to 1.05 ppm. 

Using WRF XCO2 in CMS-Flux Inversions

Comparison of Boundary Layer CO2

- Refine the WRF-Chem model setup.
- Create ensemble of  WRF simulations for 2010 using 
‘best’ parameterizations (see work of Diaz Isaac).
- Compare simulated  XCO2 and CO2 to TCCON, aircraft, 
and surface observations.
- Compare both WRF and GEOS-Chem meteorology to 
observations.
- Quantify uncertainty estimates due to transport for
North America based on ensemble results.
- Contribute these uncertainty estimates to the develop-
ment of CMS-Flux products.
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Figure 4: Seasonal histo-
grams of differences be-
tween WRF XCO2 and 
ACOS-GOSAT XCO2 in 
the WRF domain. Differ-
ences are binned at 0.2 
ppm.  The positive bias is 
greatest in summer and 
fall.

Figure 5: On the left is the June 2010 mean daily daytime 
average CO2 in the lowest ~2 km of the atmosphere from 
the 30 km resolution WRF model. The same mean daily 
daytime average CO2 from the 4° x 5° CMS posterior field is 
on the right. Contour color scales are the same.

Two 4D-Var inversions with the GEOS-Chem (4° x 5°) ad-
joint model for 2010 using the pseudo-satellite observa-
tions:  1) assimilate only the WRF XCO2 simulated for 
North America and 2) assimilate the WRF XCO2 for North 
America and GEOS-Chem XCO2 for the rest of the world.
Prior fluxes are the same as the true fluxes used to gen-
erate the pseudo-observations in this OSSE.

Figure 6: Note that the 
WRF XCO2 observations 
are biased high relative to 
the GEOS-Chem XCO2 
simulations. 

Figure 7: The bias in the WRF XCO2 in the first inversion 
(red) impacts the posterior flux over North America (middle 
panel), but also in other regions, especially the northern part 
South America (right hand panel). Adding the GEOS-Chem 
XCO2 (blue) for the rest of the world introduces a dipole in 
the posterior flux in North America and Europe (left hand 
panel).
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