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  Introduction 
The primary goal of our project (NASA Carbon Monitoring System – 
Saatchi PI) is to create detailed maps of forest carbon stocks and stock 
changes across the US to assist with national GHG inventories and 
thereby support decisions associated with land management. A 
comprehensive and accurate assessment of uncertainty in the forest 
carbon stock and stock change products is critical for understanding the 
quantitative limits of the products and for ensuring their usefulness to 
the broader community. However, a rigorous estimate of uncertainty at 
the pixel level is challenging to produce for complex products 
generated from multiple sources of input data and models. Here, we 
put forth a roadmap for assessing uncertainty associated with the 
forest carbon products provided as part of this project, which are 
generated by combining several sources of measurements and models.  

  Sources of Uncertainty 
All of the ground measurements, remotely sensed observations, and 
process-based and statistical models are imperfect no matter how 
carefully obtained, managed, or processed. For instance, we will never 
know the true values of large forest population parameters, so we 
measure a subsample of all of the individuals. The inaccuracy of 
estimation of these parameters from a sample is termed the sampling 
error. The size of sampling errors can be controlled by the survey design 
and the size of the sample. After models are fit to data, substantial noise 
(i.e. residual errors) will certainly remain. This residual noise is due to 
both measurement and model uncertainty (i.e. noisy data and imperfect 
models), with model uncertainty potentially due to both 
parameterization and choice of the functional form of the model. In 
addition, the variance of 
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Framework for Robust Uncertainty Estimation 
The bootstrapping approach to uncertainty assessment, also known as resampling with replacement, is more appropriate than 
conventional analytic methods for data with heteroscedastic errors. This method assumes that the observed data represent only 
one possible realization out of many, and reconstructs a large number of alternate realizations based on random resampling of 
the residuals. Bootstrapping brackets the range of unobserved values conditioned on the assumption of the model and its 
associated likelihood function. We estimate statistical uncertainty bounds associated with the final forest carbon stock and 
change estimates using a Monte Carlo-style sampling technique. With bootstrapping, we avoid making incorrect assumptions 
about the distribution of the underlying data sets, while combining the individual uncertainties from different sources.  

Common analytic approach to combining uncertainty is 

to “sum by quadrature” . Given uncertainties from 

multiple sources (i.e. σallometric , σremote-sensing), total 

uncertainty is calculated by: 

 

 

This approach typically assumes a Gaussian distribution 

of errors, which is often violated. 

 

Traditional analytic approach Monte Carlo approach using the bootstrap 

Step 1 Step 2 Step 3 Step 4 

Our bootstrapping approach (i.e. resampling with replacement) is similar to the approach many 
others have implemented (e.g. Robert and Casella, 1999; Press et al., 2003). Our recent 
applications include Hagen et al. 2006 & Harris et al. 2012. This approach provides a means of 
handling non-linear models and data with complicating characteristics such as heteroscedasticity. 
Above is an example using a linear ordinary least squares example. First, the model is fit to the 
original data (Step 1) and the residuals from this model are calculated (Step 2). Then, new 
realizations of the data are created (Step 3, cyan points) and a new model is fit to the new data 
(Step 3, dotted red line). This process is repeated n times (where n is large; > 1,000). The 
predictions from each iteration of the model are stored, as are the predictions plus a random 
residual. The predictions are sorted and the 2.5 and 97.5 percentiles are extracted to estimate the 
95% confidence intervals (Step 4; grey dotted line). The predictions + random residual are also 
sorted and the percentiles are extracted to estimate the 95% prediction limits (Step 4; grey line). 

Why do we use an MC framework rather than quadrature to propagate uncertainty? With Monte Carlo framework, we make 
fewer assumptions about data distributions and MC allows us to preserve full data distributions (or pdfs) instead of 
approximating distributions. Additionally, it is straightforward to link uncertainty from different sources. The primary downsides 
to the MC approach include the intensity of the data and computational requirements. For example, to process 300 million ha of 
forest with 1 ha pixels at 2 bytes  per pixel would be 600 MB / layer. If we conduct 1,000 iterations, 600 GB are required per 
product. As our project progresses, several issues need to be continually addressed. We proposed a “complete” accounting of 
uncertainty. Working with the user community and our co-investigators, we are in the process of identifying and agreeing on the 
definitional boundaries (i.e. which sources of uncertainty to include). A close collaborative approach is required and models and 
data need to be freely shared. This approach is most accurate when models are run multiple times, requiring input from  
collaborators. 
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Create maps of:
Forest cover (2000, 2005, 2010)
Above Ground Biomass (2000, 2005)
Other carbon pools (2000, 2005)
---------------------------------------
Carbon flux (2000-2005, 2005-2010)

Each map will actually be a stack of 
n realizations of that variable. Each
pixel has n estimates, which form
a probability density function (pdf)
or distribution for that pixel.
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Spatial aggregation:
We preserve the stack of n underlying 
maps. As the final step, we first sum the
pixels within the political boundary for
each realization. Then we move to the 
next realization. Each political unit 
then has a distribution of n realizations
from which summary statistics can be
derived.
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The value for county Z in realization 1 is
a + b + c + .....
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these residuals can be 
heteroscedastic (i.e. not 
constant with respect to 
one or more of the 
independent variables). To 
calculate the error budget 
of total survey error, one 
needs to systematically 
identify and define all 
potential sources of error. 
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